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Today’s Topic
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* Unsupervised Learning and Self-supervised Learning

* Learning to Efficiently Learn Neural Networks
* Aka. Meta-Learning, Learning toLearn

* Reinforcement Learning and . Human-Al Collaboration
* Some interesting projects from Prof. Wu’s group

5/10 Copyright @ 111S, Tsinghua University 2



Lecture 12, Deep Learning, 2025 Spring

Today’s Topic

OpenPsi @ I111S

* Unsupervised Learning and Self-supervised Learning

* Learning to Efficiently Learn Neural Networks
* Aka. Meta-Learning, Learning toLearn

* Reinforcement Learning and . Human-Al Collaboration
* Some interesting projects from Prof. Wu’s group

5/10 Copyright @ 111S, Tsinghua University



Lecture 12, Deep Learning, 2025 Spring OpenPsi @ I111S

Supervised Learning

* The Core Idea of Deep Learning

* Use non-linear function approximators to represent high-dimensional data
Y =f(X;0)

 We need a LOT of labeled data!

e But where are the labels from?
e Human efforts!

Labeled Data
Unlabeled Data

e What if we do NOT haveabels?

5/10 Copyright @ I11S, Tsinghua University 4
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* Representations Matter! | W4

. . \ e
* Deep learning is a tool to learn representations "g'.'; '

Goodfellow

e Can we learn useful representations from unlabeled data?

* We have tremendous (unlabeled) data!
* |Internet, videos, texts, audio

* The representations can be used-for supervised tasks
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Representation Learning

e Generative Model

* Learn a probabilistic model P(X; 0) to-fit Py,¢q(X)Via samples
 EBM, Flow Model, VAE, GAN, Autoregressive model
e Sampling:z - X

* Representations: X — z

* Latent embeddings of X
* VAE; Autoregressive model; BiGAN; EBM; Flow

* Generative models implicitly learn representations
* GM are also harder to.train{v.s. supervised learning)

* Can we run unsupervised ledrning in a discriminative way?
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Y. LeCun

How Mucnh Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

> A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

P Predicting human-supplied data

» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts anypart of its input for any
observed part.

P Predicts future frames in videos

Copyright @ 111S, Tsinghua University 7

P Miltions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Past, Present, & Future 59
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The Cherry Cake

OpenPsi @ I111S

* Definitely some people disagree with Yann ©

* Some covered in : ) ; :
' ?
lecture 10 (RL+LLM) Reward Signal in Reinforcement Learning:

* More in DRL course

Standard RL Hindsight Experience Replay
[Andrychowicz et al, NIPS 2017]

See also: Schmidhuber and Huber (1990); Caruana (1998); Da Silva et al (2012); Kober et al (2012);
Devin et al (2016); Pinto and Gupta (2016); Foster and Dayan (2002); Sutton et al (2011); Bakker and
SchmidHale et 201 B}, Va¥Enbhets t al (2017) 8
Most closely related: Schaul et al, 2015 Universal Value Functions

5/10
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Self-Supervised Learning for Representations

* Self-Supervised Learning

 Goal: learning representations z = f(x;8)
* No labels; unsupervised learning from data
» Still want to Learn in a discriminative fashion(no density)

* Create a virtual supervised learning tasks!

* Use part of X as virtual “labels”
e Create a random mask M on X
e X-(1—-M)=f(X M;0)
* Learning features via.supervised training
* |dea: SL captures generic features for down-stream tasks
* Fine-tuning for new supervised tasks

5/10 Copyright @ 111S, Tsinghua University 9
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Self-Supervised Learning

* Prediction-Based Self-Supervised Learning
» Predict any part of the input from any

other part.
» Predict the from the past. \\Q 4
» Predict the from the recent past. ’ ’
» Predict the from the present. . £ ’
» Predict the from the bottom. ' ’
» Predict the occluded from the visible A
» Pretend there is,a part of the input you <« Past Future —

— opyright singhua Universit Present
*  don’t know and predict that, «" """ Tt inherste Slide: LeCun B



[Predict these!] went to store
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] ] Transformer
Self-Supervised Learning Encoder
o
| pizza to the [M]
* Prediction-Based Self-Supervised Learning / / |
» Predict any part of the input from any_. (", lme eplaced]  [Notreplaced] - [Masked]
ofher par
LM |» Predict the from the past. 4
» Predict the from the recent past.
» Predict the from the present. ’

» Predict the from the bottom. ' ’
BERT » Predict the occluded from the visible A
» Pretend there is,a part of the input you « Past Future —

— opyright singhua Universit Present
*  don’t know and predict that, «" """ Tt inherste Slide: LeCun B
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Self-Supervised Learning

e Context Prediction (Pathak et al., ICCV 2015)

5/10

Question 2:

Question 1:

Figure 1. Ourtask for learning patch representations involves ran-
domly sampling a patch (blue) and then one of eight possible
neighbors (red). Can you guess the spatial configuration for the
two.pairs of patches? (Note that the task is much easier once you
have recognized the objeet!

I19u0 dog, 70O wSuwonog (10 Ay lomsuy

OpenPsi @ I111S
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Self-Supervised Learning

OpenPsi @ I111S

* Feature Learning by Inpainting (Pathak et.al, CVPR'2016)

e AE + random mask + GAN loss

Image Ours(L2) Ours(Adv)  Ours(L2+Adv) _© NN-Inpainting w/ our features NN-Inpainting w/ HOG

TU oS T L | T.

Figure 6: Semantic_Inpainting using different methods on held-out images. Context Encoder with just L2 are well aligned,
but not sharp. Using adversarial loss, results are sharp but not coherent. Joint loss alleviate the weaknesses of each of them.
The-ast two columns are the results if we plug-in the best nearest neighbor (NN) patch in the masked region.

(¢) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

5/10 Copyright @ I11S, Tsinghua University
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Figure 2: Context Encoder. The context image is passed
through the encoder to obtain features which are connected
to the decoder using channel-wise fully-connected layer as
described in Section 3.1. The decoder then produces the
missing regions in the image.
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Self-Supervised Learning

* Image Colorization (Richard Zhang, et al,' ECCV 2016 and more)

Input Image X

5/10 opyright @ 111S, Tsinghua University® .
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Self-Supervised Learning

* Rotation Prediction (Gidaris et al, ICLR 2018)

| Objectives: R

ConvNet | p Maximize prob. |
’ model F(_)__ | _ F‘?[X“} |

| Predict 0 degrees rotation (y=0)

— g(X,y=0)

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Rotate 0 degrees

Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The Rotated image: X"
core intuition of our self-supervised feature learning approach is that it someone is not aware of the |
concepts of the objects depicted in the images. he cannot recognize the rotation that was applied to — _ ) |
them. ) - h

ConvNet- ] | | Maximize prob. -
X, y=1 2 — L
— g(x,y=1) _% | model F() | | F(xY) |
Rotate 90 degrees : . - Predict 90 degrees rotation (y=1) |
Rotated 1mage: X

: |

._ ! ConvNet . Maximize prob.
> g(X.y=2) 1 " nodelF() | ™ )

Fx7)

Rotate 180 degrees | Predict 180 degrees rotation (y=2)

‘ 3 | C rNt----- i . - b |
— g(X,y=3) —y% onvNe » Maximize prob

model F'_(._)_ B | F(x7) J |

Rotated image: X~

Rotate 270 degrees | Predict 270 degrees rotation (y=3)

Rotated image: X° _

ComAB/20 x 27 Conv3 13 x 13 Conv5 6 x 6 Convl 27 x 27. Conv3 13 x 13 Conv5 6 x@@pyright @ 111S, Tsinghua University 15

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model



Lecture 12, Deep Learning, 2025 Spring OpenPsi @ I111S

Self-Supervised Learning

e Contrastive Predictive Coding (Van den Oord et.al, DeepMind, 2018)
e CPC: Originally proposed on audio data

* Use context to predict future embeddings
* Use contrastive loss (avoid trivial solutions)
* Random negative samples required-(other/ocations / other samples in each mini-batch)

C-[; Predictions
n m " ::==ffffszff:3::I.'I'j ~~~~~~~ Q
‘ @ .\‘\\ ‘\ \. N\ ‘\ xt+k7 Ct) — eXp (zt+kaCt)
Zt Zt+1 Zt+42 Zt+3 Zt+4-4 T C
genc /genc\ /genC\ /genc\ genc genc genc X Zx:} EX fk (x]’ Ct)
Tt— Tt—2 Ti—1 | Ti+1 | Tey2 Ti+3 | Ttt4a
\”W\! l ‘U\l‘j\‘ e W» ol MN' ‘\‘/’\W’M - WQWWW iU T~ "

Figure from Alex Graves
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Self-Supervised Learning

e Contrastive Predictive Coding (Van den Oord et.al, DeepMind, 2018)

Method | ACC
Method | ACC
Phone classification -
Random initialization | 27.6 #steps predicted i
MFCC features 39.7 2 steps 28.5
CPC 64.6 4 steps 57.6
Supervised 74.6 8 steps 63.6
12 steps 64.6
Speaker classification 16 steps 63.8
Random initialization 1.87 Negative samples from
MECC features 17.6 Mixed speaker 64.6
0! Ly ()% £\, CPC i 97.4 Same speaker 65.5
Supervised 98.5 Mixed speaker (excl.) 57.3
Figure 2: -SNE visualization of audio (S]?eech) Figure 3: Average accuracy ’Of predlct‘mg the Table 1: LibriSpeech phone and speaker Same speaker (excl.) 64.6
representations for a subset of 10 speakers (out positive sample'in the contrastive loss for 1 to 20 lassificafi Its. For ph lassifi Current sequence only 65.2
of 251). Every color represents a different  Jatentsteps in the future of a speech waveform. classilicalion results. or pnone classiil-
speaker. The model predicts up to 200ms in the future as cation there are 41 possible classes and Table 2: LibriSpeech phone classifica-
every step consists of 10ms of audio. for speaker clasmﬁcatlo_n 251. All mod- tion ablation experiments. More details
els used the same architecture and the can be found in Section 3.1.

same audio input sizes.

5/10 Copyright @ 111S, Tsinghua University 17
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Self-Supervised Learning

OpenPsi @ I111S

e Contrastive Predictive Coding (Van den Oord et.al, ICML 2020)

* CPCv2: improved version of CPC on images with large scale training
* Basic-version CPC on images: PixelCNN (masked convolution)
* Divide an image into patches; For each context ¢, predict “future” patches below it

GJenc - output

T
64 px -~ - -

) el Ziao| |-

e Si4-3| el
el , A e

50% overlap |

256 1)){: :
\ input image I

5/10

Gar - output

-~ Predictions

Feature Extracter fg
Patched ResNet-161

Context Network 9%
Masked ConvNet

Copyright @ 111S, Tsinghua University

- Patched Masked
Self-super\ﬂsed [256, 256, 3] ReaNst-161 [7. 7. 4096] ConvNet [7. 7. 4006] / \
ini InfeNCE
pre-training N e e -
100% images; 0% labels X Lt | z [ % 7| ¢ _/
Pre-trained Fixed

. . . [256, 256, 3] Patched Reshet-181 [7, 7, 4008] Linear [1000, 1] \‘-.
Linear classification e Cg’?ﬁ ;
100% images and labels X —lv z —lv y "

Pre-trained

Fixed / Tuned —
.. . . [224, 224, 3] Resist-161 [14. 14, 4004] ReaMst-33 [1000, 1] __-/C .
Efficient classification Hins il
1% to 100% images and labels X —P Fd —P Vi \\_

Pre-trained

Fixed / Tuned e
. H.W. 3] ResMst-181  [HA6, W16, 4006] Faster-RCNN [20. 1] 'M T \._
Transfer learning M Tk )
100% images and labels x —— z —- y
S ised traini [224,224 3] ReaMst-152 [1000, 1] /g \
upervised training [ Lross
1% to 100% images and labels x = h, >y —I—’"\ Ent )
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Self-Supervised Learning

e Contrastive Predictive Coding (Van den Oord et.al, ICML 2020)

* CPCv2: improved version of CPC on images with large scale training

* Enhancements: Large-scale training; layer normalization; prediction in 4 directions; more
prediction directions; patch-based data augmentations

> o METHOD ParRAMS (M) Top-1" Top-5
S 07 o—¢
8 ® . .—-—*"‘-’.-/
@ ® Methods using ResNet-50: 094 /.
S 0.65] ® INSTANCE DISCR. [ 1] 24 54.0 - ' /0 /0 2“—X T
© ° LOCAL AGGR.[2] 24 58.8 - & ® pe labels
= 05 ° MoCo [3] 24 60.6 - 208_ /
O ® PIRL [4] 24 63.6 - 8 O e
© © 5x fewer ¢
S 0551 CPC v2:- RESNET-50 24 63.8 85.3 IS labels
c = -
£ ® .8 0.7
CPC vi CPCv2 Methods using different architectures: K
- ©
+MC +BU +LN +RC +HP +LP +PA MULTI-TASK [5] 28 - 69.3 S 0.6- o
. L Jassificati formance of new var e ROTATION [6] 86 55.4 - 0
igure 3. Linear classification performance of new variants o ./ CPCwvI1 [7] 8 487 73 .6 Q
which incrementally add a series of modifications. MC:.meodel ¢a- BIGBIGAN [8] 36 61.3 819 =
pacity. BU: bottom-up spatial predictions. LN: layer normalization. AMDIM [9] 626 68“1 o 0.51 -e- ResNet trained on CPC features
RC: random co]or-dropp_mg. HP: horizontal spatial pr.edlcnons. CMC110] 188 68 .4 8.2 o -e- ResNet trained on raw pixels
LP: larger patches. PA: further patch-based augmentation. Note MoCo [2] 375 686
that these ac%ugz(}cies are evaluated on a custom validation set and. __ - S I N rs‘l _ 0.4 1' é é 1'0 2'0 5'019 160
are therefore not directly comparable to the results we reporton > CPC v2 - RESNET- | %yl e i(}{is : “?13" 90.1

Percentage of labeled data

the official validation set.
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Self-Supervised Learning

* MoCo: Momentum Contrastive Learning(Kaiming-et al, CVPR 2020)
* Get negative samples directly from a buffer (fast 'negative sampling)
* Two encoders: fgq for query; fg, for keys; store key samples in a queue

* SGD for 6,; 0}, is updated using exponential moving average (momentum)

contrastive loss

similarity 9]
. ko ey Ko . / \
o o

queue q k

ST momentum l l
encoder
Encoder Momentum Encoder eXp (q A k-+ /7-)

pauery o5 kY ey . k = fo (o) Loy = — lOg
T Iy 1 Ty q =f({,(011) k q

6O = mby + (1 —m)é, Z'f{:() exp(qkz/T)

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary

of encoded keys using a contrastive loss. The dictionary-keys q k

{ko, k1, ko, ...} are defined on-the-fly by a set”of\data_samples. \ /

The dictionary is built as a queue, with the current mini-batch en-

queued and the oldest mini-batch dequeued, decoupling it from ( Fomisastive ¥ J

the mini-batch size. The keys are encoded by a slowly progressing

encodes/deiven by a momentum update with the query encoder. Copyright @ I11S, Tsinghua University 20

This method enables a large and consistent dictionary for learning
visual representations.
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Self-Supervised Learning

* MoCo: Momentum Contrastive Learning(Kaiming-et al, CVPR 2020)

* Why momentum encoder?
* Ensure the encodings in buffer moves slowly via momentum

* Enable a consistent buffer of negative samples (no need to recompute features)
* This further ensures the feature ‘extractor updates smoothly

contrastive loss contrastive loss contrastive loss
Al
q'k ¥ Q‘k e q-l;
|
q k q k q k
P
encoder q encoder k encoder sam p“ng encoder momentum
encoder
) memory
k bank k
xd T x? x? T
(a)end-to-end (b) memory bank (c) MoCo

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can
5/10 . . ) . Copyright @ 111S, Tsm?ch Li versity _ L
be different). (b): The key representations are sampled from a memory ban u[arn n]I (c): MoCo encodes the new keys on-the-fly by a

momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.
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Self-Supervised Learning

OpenPsi @ I111S

* MoCo: Momentum Contrastive Learning(Kaiming-et al, CVPR 2020)

701 ShIC-R50wex RSow4x AMDIM-large
i )
& R50w2x oV CF;CVZ
58t A — 5 .80 B R’%ﬁﬂc_%o LMDIM-smal
& =573 565 .= =" R5d' BigBiGAN-RV50w4x
go6 /5?5(3 o 60 ®
3 _ |sfs sap. -7 ¢-ocalAgg
so4r A o BigBiGAN<R50
- o~ e Rotation
52 0-° —»—end-to-end - | ®
52 - —#--memory bank > 9 .
o nstlise
50~ MoCo 8 RelativePosition
50 “ 1 1 1 1 1 - .
256 512 1024 4096 16384 85536 3 50 ‘ePcvi
K (log-scale) cc-é t)%epCIuster . |
Figure 3. Comparison of three contrastive loss mechanisms un- Jigsaw & empiar
der the ImageNet linear classification protocol. We adopt the same B b
pretext task (Sec. 3.3) and only vary the contrastive loss mecha-
nism (Figure 2). The number of negatives is K in.memory bank 40 Colorization _
: : )
and MoCo, and is K —1 in end-to-end (offset by one because the # t M previous
positive key is in the same mini-batch). The netwerk is ResNet-50. ‘ palrame ersl( ) ‘ MoCo
0 200 400 600

5/10 Copyright @ 111S, Tsinghua University 22
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Self-Supervised Learning

e SimCLR (Chen et al, Hinton’s group, ICML'2020)

* A Simple Framework for Contrastive Learning of Visual Representations
* Predefine a set of transformations

* For a data, sample two transformations | Maximize agreement
* Maximum agreement on representations zf’ ) ” Z‘f

* No explicit negative data sampling 9() 9()
* Non-paired data in the batch are negative ones h; +— Representation —> h;

* For each z;, and everyunpaired z;.in the minibatch
* Minimize the agreement fC) fC)

5/10 Copyright @ 111S, Tsinghua University
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Oﬁnnnn; o LLl
Algorithm 1 SimCLR’s main learning algorithm.

: : input: batch size IV, constant 7, structure of f, g, T
Self-Supervised Learning o i miah (a1 . o
forall k € {1,..., N} do
draw two augmentation functions t ~7, t' ~7T
# the firstaugmentation

* SImCLR (Chen et al, Hinton’s group, ICI Fop_ e flan)

* A Simple Framework for Contrastive Lear hop<i= f(Zor-1) # representation
Zoi—1 = g(hag—1) # projection
#the second augmentation
Top = t’(ack)

| “ '— b

hor = f(Tor) # representation
zor = g(hoy) # projection
end for
: forallic {1,....2N}andj € {1,...,2N} do
(b) Crop and resize  (c) Crop, resize (and ﬂ1p) (d) Colordistort. (drop) (e).Color distort. (jitter) Si,j — Z;I— zj /( H z; H ” zj ”) # p airwise simil arity
end for

exp(s;,;/T)
Zjl Lipq) exp(sin/T)

_ 1 N
L= 55 2k [((2k—1,2k) + €(2k, 2k —1)]
SE update networks f and g to minimize £
(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering end fOI'
return encoder network f(-), and throw away ¢(-)

define ¢(7, 7) as ((i,j)=—log 5

5/10 Copyright @ I11S, Tsinghua University 24
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Self-Supervised Learning

* SimCLR (Chen et al, Hinton’s group, ICML'2020)

* A Simple Framework for Contrastive Learning of Visual Representations

Label fraction

Method Architecture 1% 10%
®Supervised #SimCLR (4x) Top 5
° 75 *SImCLR (2x) Supervised baseline ResNet-50 484 804
E " eCPCVv2-L Methods using other label-propagation:
S 70 MoGo (4x) Pseudo-label ResNet-50 51.6 824
5 *SimCLR oCMC ¢ VAT-+Entropy Min. ResNet-50 470 834
3 oPIRL-c2x it UDA (w. RandAug) ResNet-50 ~ 885
. 9 oMoCo (2X) AMDIM FixMatch (w. RandAug) ResNet-50 - 891
S *CPCVZ PIRL-ens. S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
o
— PIRL O Methods using representation learning only:
D 60 ‘MOCO °BigBIGAN InstDisc ResNet-50 392 774
% LA BigBiGAN RevNet-50 (4x) 552 788
=4 PIRL ResNet-50 57.2 83.8
£ 55 eRotation CPC v2 ResNet-161(x) 779 912
elnstDisc SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x)  83.0 91.2
25 50 100 200 400 626 SimCLR (ours) ResNet-50 (4x) 85.8  92.6
5/10 Number Of Parameters (M|”|On3) Copyright @ 111S, Tsinghua UnivVeTSTITY 25

Table 7. ImageNet accuracy of models trained with few labels.
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Self-Supervised Learning

* MoCo-v2 (Xinlei Chen, Kaiming He, et al,2020)

* Larger batch size + More data augmentations + MLP projection head

concat.

loss unsup. pre-train ImageNet
case MLEP * aug+ cos epochs  batch acc.
» loss MoCo vl [6] 200 256 60.6
=ity SimCLR [2] | ¥ v Y 200 256 | 619
affinity - H SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
X X results of longer unsupervised training follow:
SimCLR [2] v v v 1000 4096 69.3
m MoCo v2 v v v 800 256 71.1

m m Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
encoder encoder encoder m:r:';iggrm vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we

{ HL HL /[/f/y[/? H f J [ thank the authors for providing the numerical results).

queue

— mechanism  batch  memory /GPU  time /200-ep.

(a) end-to-end (b) Momentum Contrast MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
Figure 1. A batching perspective of two optimization mechanisms end-to-end 4096 93.0GT n/a

foseontrastive learning. Images are encoded into a representati i i iversi . . .
SRonrasin JHNE. TMages P ovriaht & 1Sy RS2 NiRRroYy and time cost in 8 V100 16G GPUs, imple-
space, in which pairwise affinities are computed.

mented in PyTorch. T: based on our estimation.

OpenPsi @ I111S
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Self-Supervised Learning

* MoCo-v3 (Xinlei Chen, Saining Xie, Kaiming He,.2021)
 Built for ViT & stability enhancement for self-supervised learning on ViT
* No sample queue; Use other mini-batch'samples as negative samples

framework model params acc. (%) Algorithm 1 MoCo v3: PyTorch-like Pseudocode
@near;yvkung: ) # f_d:sancoder: backbone + proj mlp + pred mlp
1GPT [9] 1GPT-L 1362M 69.0 # f % :N\glomentum encoder: backbone + proj mlp
. : . # nomentum coefficient
iGPT [9] iGPT-XL 6801M 72.0 MY, tomperatuze o
MoCo v3 \ﬁle 86M J6.7 for x in loader: # load a minibatch x with N samples
MoCo v3 ViT-L 304M 77.6 x1l, X2 = aug(x), aug(x) # augmentation
) . _ gl, g2 = f g(x1), f_g(x2) # gueries: [N, C] each
MoCo v3 ViT-H 632M 78.1 kl, k2 = f_k(xl), f k(x2) # keys: [N, C] each
MoCo v3 ViT-BN-H 632M 79.1 ,
. loss = ctr(gl, k2) + ctr(g2, k1) # symmetrized
MoCo v3 ViT-BN-L/7 304M 81.0 loss.backward ()
end-to-end fine-tuning: update (f_q) # optimizer update: f g
Inasked[xnch1ned.[lb] ViT-B R6M 79£ﬁ' f_k = m+xf_k + (1-m)*f_g # momentum update: f_k
MoCo v3 ViT-B 86M 83.2 # contrastive loss
; T def ctr(g, k):
MoCo v3 ViT-L 304M 84.1 logits = mm(g, k.t()) # [N, N] pairs
’ . . labels = range(N) # positives are in diagonal
Tablg,|.  State-of-the-art Self-supervised Transformers in s rsidessmiersgossEntropyLoss (logits/tau, labels) .

return 2 %= tau = loss
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* Masked Autoencoders (MAE; Kaiming He, et al,2021)
» Key idea: use auto-encoder to predict (75%) masked patches
* Encoder: ViT; only operates on visible patches
* Decoder: shallow ViT (~¥10% of encoder); only used for training
* Loss: predict pixel values for the missing patches
\‘ < | |~ fine-tuning | 849 85.0 84.9 849
’ - BT - /Si? N VI
u ‘ 7 8:3_.2 834 8)’// \
EESEE & v s - @ @
| L S ENns S ST skmento@
W BB > s encoder iy decoder| — — B & ‘ s 735
LEEEe LEEEE e o T8 B
EEEEE EEE <1
input - target 60 L 589 <
AN VA : : 546 —
5/10 Copyright @ 111S, Tsinghua University 5OlO 3|0 3IO 4|0 SIO ISIO 7|0 SIQS QIO

masking ratio (%)
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Self-Supervised Learning

* Masked Autoencoders (MAE; Kaiming He, et al,2021)
» Key idea: use auto-encoder to predict (75%) masked patches

method pre-train data  ViT-B  ViT-L.  ViT-H ViT-Huag
scratch, our impl. - 82.3 82.6 83.1

DINO [5] INIK 82.8 - - -
MoCo v3 [9] INIK 83.2 84.1 - -
BEiT [2] INIK+DALLE  83.2 85.2 - -
MAE INIK 83.6 85.9 86.9 87.8

Table 3. Comparisons with previous results on ImageNet-

APbox APpmask
method pre-train data ViT-B ViT-L ViT-B  ViT-L.
supervised INIK w/labels  47.9 49.3 429 439

MoCov3  INIK 47.9 49.3 427 44.0
BEiT INIK+DALLE ~ 49.8 53.3 44.4 47.1
MAE INIK 50.3 53.3 44.9 47.2

Table 4. COCO object detection and segmentation using a ViT

method pre-train data ViT-B ViT-L
supervised INIK w/ labels 474 49.9
MoCo v3 INTK 47.3 49.1
BEiT INIK+DALLE 47.1 533
MAE INIK 48.1 53.6 ”

Table 5. ADE20K semantic segmentation (mloU) using Uper-
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Multi-Modal Contrastive Learning

* CLIP: aligned representation for text and‘images (OpenAl, 2021)

* 400M paired text-image data; Aligned.representation space
* Released model: https://github.com/OpenAl/CLIP

* Contrastive learning on paired text and image representations

(1) Contrastive pre-training (2) Create dataset classifier from label text

;:"_ —_— -
CAL | N— \‘
Pepper the
auélsj_e pup > En-lfoxctier rj@’_ [l A -":'I,h,cit,c, ,Cf > ETexé
v v 4 ) g , - e
T, T, T Ty : .

4 T
—>» I IpTy [ ITy | I T3 | o | I Ty .
. . (3) Use for zero-shot prediction v v v v
L » 5 | IIE-Tl LT, | LyTy | . [IyTy T) T, T3 Ty
|
Image |
<Nl I3y | 3Ty | I3T3 | . | I3 Ty I
Encoder s mage I I'Ty | 1Ty [T Ty
l Encoder —>» L iy el 11N
.
5/10 C ight @ 111S, Tsinghua Universit oto o 30
Iy |1N'T1 heTs | BeTs | . ?pr{Nq 0 q y 2 pht_-t_t," £
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OpenPsi @ 111S
Multi-Modal Contrastive Learning
* CLIP: aligned representation for text and‘images (OpenAl, 2021)
* CLIP captures strongly semantic information
_ RT:P%:;]EE Ze(rDOI:ISF’hOt A Score
ImageNet £ 76.2 76.2 0%
ImageNetV2 [ @ 643 701  +58%
ImageNet-R 37.7 88.9 +51.2%
ObjectNe 326 723  +39.7%
Imagehleg (X 252  60.2 +35.0%
Sketch
5/10 ImageNet-A ' 2.7 771 +74.4% 31
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Multi-Modal Contrastive Learning

OpenPsi @ I111S

e SigLIP: Sigmoid Loss for Language Image Pre-Training (Google, ICCV
2023)

Device 1

Device 2

3

Devic

5/10

* Change softmax operator in CLIP to sigmoid loss + large scaling training

Device 1

el

Device 2 Device 3

I'l‘ 15 IE 17 IB I‘? IlU [11 IlZ

Device 1
3
1)

Device 2
]
-]

loss

Device 1
e e Bk

Device 2
LN |

Sl = | ==
- 4+ o —
= | = el =
= | = | -

DeviceS

|19 Ill] I11|112

1 1 g

19 |

|
+

33913386 33% 33%)

Device.1

33% 33% 33% 33%|33% 33% 33% 33%

Device 2

Device 3

Device T
H
s

loss

Device 1

Device 2

Device 3

PN (L L L I | (I | s (Lo laa Ly

A

66% 66% 66% 66%

Device 1

66% 66% 66% 66%

Device 2

66% 66% 66% 66%

Device 3

Copyright @ 111S, Tsinghua University

Device 2
...]
w

Device 3
o

8 Ty

loss

Device 1

L |i

Device 2

L|L |||l

Device 3

19 IlO Ill II.Z

Ll 4 d 3 kA

Device 1

Device 2

Device 3

N

!

Cross Device

"4
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Multi-Modal Contrastive Learning

e SigLIP: Sigmoid Loss for Language Image Pre-Training (Google, ICCV
2023)

* Change softmax operator in CLIP to sigmoid loss + large scaling training

85 1 )
_______________ ce8 Devicel ™  Device 2 Device 3 Device 1 Device 2 Device 3
L 84 . LNz PN (L L L I | (I | s (Lo laa Ly LL L L s e |85 | 1a | Io [Lig )L | Lz
T = LN iy | g e Th R EE
s5n s e A | B
S 7 » G =T T=1: = =11
3 T3 S 82— 8|I3 8 Tg
T o | T == == i ===
o 3 = ” o 6 - . . . .
e £ 201 | 1| Algorithm 1 Sigmoid loss pseudo-implementation.
g S = 1 : . 8 7
T, * 1 — 8k .~ Sigmoid ) - |
1 79 | ne N oL == T 1 # img_emb : image model embedding [n, dim]
ET; A 262k *= Softmax =7 ET:) 2 # txt emb : text model embedding [n, dim]
== 78— - . ‘ 2 3 # t_prime, b : learnable temperature and bias
Ezﬂ 450 900 3000 18'000 = = ain s % n . mini-batch size
i Examples Seen {M] 1= 5
l l 6 T = exp(t_prime)
. QT s . e 7 zimg = 12_normalize (img_emb)
Figure 3: SigLiT ImageNet 0-shot transfer results Wlth i i IOSSE s ztxt = 12 normalize (txt emb)
different training durations. Large batch size results ina ¢ Do logits = dot(zimg, ztxt.T) % t + b
big performance boost, but needs a sufficiently long sched- 0 labels = 2 x eye(n) - ones(n) # -1 with diagonal 1
5/10 Copyright @ I111S, Tsinghua Unliverkity —sum (log_sigmoid(labels * logits)) / n 33

ule to ramp up, as for short schedules, very large batch size

results in a small number of gradient update steps.
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Multi-Modal Contrastive Learning

e SigLIP v2: Improved Multilingual Vision-Language Encoders (Google
Deepmind, 2025)

* SiglLIP combined with captioning-based-pretraining, self-supervised losses and

online data curation Lo d funs 100
AR - captioning

SILC/TIPS loss (20%): Decoder - dense captioning

rwself-distillation - ref. expressions

- masked prediction

T V\ cross-attn. Sigmoid loss (100%)
stop gradient aux. head ‘ MAP head ‘

EMA
Image Image Text
Encoder Encoder Encoder
(teacher)

5/10 Copyright @ 111S, Tsinghua University ': : 34
image text
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Multi-Modal Contrastive Learning

OpenPsi @ I111S

e SigLIP v2: Improved Multilingual Vision-Language Encoders (Google
Deepmin ‘

Segmentation T Depth | Normals |
o SigLIP< Model ViT  Res. PASCAL ADE20k NYUv2 NAVI NYUv2 NAVI d |osses and

online CLIP [50] L/14 224  74.5 39.0 0.553 0.073  24.3 255

N OpenCLIP [27] G/14 224 714 39.3 0.541 - - -
mm si SigLIP [71] So/14 224 . 72.0 37:6 0.576 0.083 259  26.0
_0s = Si SigLIP 2 So/14 224 771 41.8 0.493 0.067 249 254

@ m

R SigLIP [71] So/14 384 73.8 40.8 0.563 0.069 24.1 254
02] SigLIP 2 So/14 384  78.1 45.4 0.466 0.064 23.0 25.0

Image — Text Retrieval

recall@ |

.

—_

-~

[S]
L

0.0-

S
SEESRSIEN
¥ Q’b Q\}z?' o

5/10 o
&

&

SigLIP
SigLIP 2
mSigLIP

P S F @
‘bé& Q\QQ\&\Q\ <&

o@

& & &
. B 3 \
,&0 {,;«‘y & C‘& \g-' <t qu} ?" <“

\‘b? ‘§®_¢ .
Qﬂo &o& \33 Qtf" *'o'\ le_. éz}’c

Copyright @‘IIIS Tsm&hﬁa University =~ =°

& S &S

é}(\

& 35



Lecture 12, Deep Learning, 2025 Spring

Multi-Modal Contrastive Learning

OpenPsi @ I111S

* SigLIP v2: Improved Multilingual Vision-Language -Encoders (Google
Deepmind, 2025)

* SigLIP combined with captioning-based-pretraining, self-supervised losses and
online data curation + more diverse high-quality data

Segmentation ] Depth | Normals |
Model ViT Res. PASCAL -~ADE20k NYUv2 NAVI NYUv2 NAVI
CLIP [50] L/14 224 74.5 39.0 0.553 0.073 24.3 25.5
OpenCLIP [27] G/14 224 71.4 39.3 0.541 - - -
SigLIP [71] So/14 .~ 224 72.0 37.6 0.576 0.083 25.9 26.0
SigLIP 2 So/14 224 77.1 41.8 0.493 0.067 24.9 25.4
SigLIP [71] So/14 384 73.8 40.8 0.563 0.069 24.1 25.4
SigLIP 2 So/14 . 384 78.1 45.4 0.466 0.064 23.0 25.0

5/10

Copyright @ 111S, Tsinghua University
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Predictive Modeling with Actions

e Can we build intelligence from massive data in the world?
* A model on video data
* Prediction with actions

* The world model (Ha et al. 2018)

* Learn latent representations from video
* A VAE model over images
* Xt 7z

* Prediction based onactions
* A transition model over latent variables

* f(zpar) o zea
* a; = C(z;) can bedearned or given

5/10 Copyright @ I11S, Tsinghua Univ4rsity
A World Model, from Scott McCloud's Understanding Comics. [1, 2]
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Predictive Modeling with Actions

OpenPsi @ I111S

e Can we build intelligence from massive data in the world?
* A model on video data
* Prediction with actions

* The world model (Ha et al. 2018) \ _'
* Learn latent representations from video @

* A VAE model over images

—
© Xp > Z4 / =
* Prediction based onactions k”{

y . =—A1T]
* A transition model over latent variables 15

* f(zpar) o zea
* a; = C(z;) can bedearned or given

5/10 Copyright @ 111S, Tsinghua University 38
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Predictive Modeling with Actions

e Can we build intelligence from massive data in the world?
* A model on video data

(

* Prediction with actions | environment }* —
[ action
* The world model (Ha et al. 2018)
* Learn latent representations from video v
* A VAE model over images > VAE (V)
* Prediction based onactions . _z
" , observation ! 5 >
* A transition model over latent variables : C
* fna) - zen world model | MDN-RNN (M)
* a; = C(z;) can bedearned or given

qgction )

5/10 Copyright @ 111S, Tsinghua University t
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* \VPT: Learning to Act by Watching Videos(OpenAl;2022)

5/10 Copyright @ 111S, Tsinghua University
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Lecture 12, Deep Learning, 2025 Spring

Predictive Modeling with Actions

* The Latent World Models (LeCun et al, 2024) (https://arxiv.org/abs/2403.00504)

* Direct MoCo-style representation learning over latent variables
Generative World model Joint Fmbedding JEPA world model

Predictor/World Model

Decoder/World Model

1=

)

=

[=]

L*]

=

=

Transformation, Action Transformation, Action Transformation, Action
Unconditional DfitnQiug’ Autoegche€ry Siamese, SimCLR, VICReg, DINO BYOL. SimSi
Variational Autoencoders ’ ’ » S1IS1AIM
Latent world models. I-JEPA.

42

Generative World Models ) . .
Copyright @ 111S, TsinghudNUndversity Equivar_iaut SSL, IWM (Ours)

s/10 Conditional :
Masked Image Modeling
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Predictive Modeling with Actions

* The Latent World Models (LeCun et aI, 2024) (https:/#/arxiv.org/abs/2403.00504)
* Direct MoCo-style representation learning over latent variables

Table 4 Finetuning evaluations on ImageNet-1k. We evaluate prediction based methods by finetuning their encoder, by keeping
the encoder frozen and finetuning their predlctwe world model or by ﬁnetunlng both. Finetuning the world model is highly
effective with IWM when it exhibits an equivariant behavior. This behavier is absent or less clear with other methods, showing
the importance of a strong world model.

No predictor Frozen encoder, tuned predictor

Method Epochs End to end
Encoeder Random Init. Pretrained
MAE 300 82.7 82.4 82.7 (+0.3) 82.3
1600 83.6 83.0 83.1 (+0.1) 83.3
I-JEPA 300 83.0 79.1 80.0 82.0
I’WI\-’I{TS 84 300 83.3 80.5 81.3 82.7
5/10 IR?BI]ES%?S:L 300 82'9 Copyright @ 111S, §|1th3§ University 83'3 [ l O ) 34'4 43




Predictive Modeling with Actions

What if we train a latent world model
with /massive video data?
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Predictive Modeling with Actions

* Genie: Generative Interactive Environments (DeepMind, 2024)
* Convert a text/image into an actionable‘world

[Prnmpt] l SSlD.kF M A. B XY I

Text-to-

image B - o -
Hand-drawn | » = . o : - S :
sketch L-—-| s L_ L .
Genie "- A
\

B Mm-=n )
N
5/10 Copyright @ 111S, Tsing ﬁ u
b bt bt
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Predictive Modeling with Actions

OpenPsi @ I111S

* Genie: Generative Interactive Environments (DeepMind, 2024)

Copyright @ 111S, Tsinghua University 46
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Predictive Modeling with Actions

* Genie 2: A large-scale foundation world. model (DeepMind, 2024)
* Large-scale training + consistent actions= 3D scenes + 10~20s videos

@

5/10 47



Predictive Modeling with Actions

Generate a playable world
on a spaceship




Predictive Modeling with Actions

We can build antagent with a world model!
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Predictive Modeling with Actions

* Dreamer v3: Mastering diverse control tasks through world models
(Deepmind, 2025)

e Large-scale world model learning + model-based reinforcement learning

World model learning Actor—critic learning

X X X X, X X X
Fig.1| Training process of Dreamer.The world model encodes sensoryinputs reconstructed as £,using the decoder (dec) to shape the representations.
5/10 x.usingthe encoder (enc) into discrete representations z,that are prespigiiedt ¢ 111S] He ingteratnd erisicpredict actions a,and values v,and learn from trajectories 50

by asequence model withrecurrentstate /7, givenactionsa,. Theinputsare ofabstractrepresentations Z,and rewardsr, predicted by the world model.
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Predictive Modeling with Actions

* Dreamer v3: Mastering diverse control tasks through world models
(Deepmind, 2025)
e Large-scale world model learning + model-based reinforcement learning
* First project to discover diamond-in Minecraft without human supervision

r

Minecraft Diamond lron ore Iron pickaxe Diamond
12 ﬁﬂ)D— 100 100
= — _ |
£N\.50% 50 - 50
- R , _
8 01— 0 S Y 0 I R B
£
5 — 80 - 40 ~ 1.0
& 2 _
1]
4 g 40+ 20 - 0.5
K7 - -
é o
D _ e G ] G i
— Maximum | | | | | | |
0- Mean 0 50 100 a 50 100 0 50 100
I I I Environment Environment Environment
10° 10° 107 108 steps (1 Ds} steps (1 OE]I steps (1 OBj
5/10 Copyright @ 111S, Tsinqhu,a_Uniypﬁity_ Rainbow IMBALA = [reamer 51

Environment steps
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Summary

* Unsupervised Learning
* Leverage the massive unlabeled data
* Only X available = Generative models

 Self-supervised Learning

* Create virtual supervision using portion‘of X
* Prediction-based SL
» Rotation, color, patches; predict futures (CPC);
 Random mask + reconstruction (BERT, MAE)
* Contrastive Learning
* CPC, MoCo; SimCLR: maximize agreement between transformations; need negative samples
» CLIP/SigLIP; cross-modal representation learning

e World Model

5/10 Copyright @ 111S, Tsinghua University 52

* Predictive video models with actions
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Today’s Topic

OpenPsi @ I111S

* Unsupervised Learning and Self-supervised Learning

* Learning to Efficiently Learn Neural Networks
* Aka. Meta-Learning, Learning toLearn

* Reinforcement Learning and . Human-Al Collaboration
* Some interesting projects from Prof. Wu’s group

5/10 Copyright @ 111S, Tsinghua University 53
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Today’s Topic

OpenPsi @ I111S

* Unsupervised Learning and Self-supervised Learning

* Learning to Efficiently Learn Neural Networks
* Aka. Meta-Learning, Learning to.Learn

* Reinforcement Learning and Human-Al Collaboration
* Some interesting projects from Prof. Wu’s group

5/10 Copyright @ 111S, Tsinghua University 54
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Few-Shot Learning

* Unsupervised Learning
* Deep learning requires lots of data-label pairs
* Unsupervised/Self-supervised Learningto preduce supervision

* What if you really just have a few data?
* Few-shot learning
* Training
* A collection of “tasks”
* Task: a few samples and targets

* Testing
* Afew new labeled samples :ﬁi M

* Prediction % @

bikes :lE )
5/10 Copyright @ I|||5, Tsinc ¥ er v 55

Training Testing
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Few-Shot Learning

* Formulation
* Training data D: a collection of task T

. T:{Sy By} = {(xf, vs), (x]B,y]B)j}
e St:support set (training examples), By: test batch (’greafr:clugg examples) resting
* |St]|is typically small I

* Target: few-shot learner NG ﬂ
* ¥y = fo(x|Sr)forx €B Y Ve
* Predict based on support set

: i - 5 v'.'. \ i
i § 3 | ” " i i = A T
\ ) ! [’
1 H N e e R S e e e e AR e S / ' dogs o
* Training : m -
____________ o I B =
| | otters E ¥

* L(T,0) = Eqeyyen, [Div(fo(xISr), ¥)] |
.« 9* = arg mein EreplL(T, 0)] éﬂowers i

! bikes NS ) AV | Y
& |

5/10 Copyright @ 111S, TsindRua’ Und 56
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Meta Learning

* Formulation
* Training data D: a collection of task T

o T:{ST;BT} — {(xl'yig) (x] 'y]B) }

e St:support set (training examples), B7: test batch (testing examples)

Trammg Testing
* |S7|is typically small PR R N 12in dotaset #1:“catbird’ SRR ’
° Target: meta learner \ "g > ‘ |
i o 2

* Predict based on support set o ‘? - |

* Meta Training -

* L(T,0) = Eggyyen, [Div(fo(x]Sr), y)]
« 0* = arg mein ErcplL(T, 0)] iﬂ°wers

i . ~ e
1 bikes ANRL )
5/10 Copyright @ IIIS TsinoRua’ Und
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Meta Learning

e Standard Learning
* Learner:y = fg(x)
* Once @ is learned, the output of f (x) is never changed
* Training:
* A single task of massive data pair T"=9{(x;¥;)}, SGD is used for training

* Meta-Learning

* Meta-Leaner: y = fgo(x|S7)
* fg can further adapt.with additional samples in S
* Meta-Training:
* Alarge collection of tasks is provided D = {T;}
* Use SGD to learn meta-learner on each T; (outer loop)
* Meta-learner fg(x[S) must adapt quickly with S¢. (inner loop)

5/10 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S
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Meta Learning

e Standard Learning
* Learner:y = fg(x)

* Once @ is learned, the output of f (x) is never changed
* Training:
* A single task of massive data pair T"=9{(x;¥;)}, SGD is used for training

* Meta-Learning

* Meta-Leaner: y = fgo(x|S7)
* fg can further adapt.with additional samples in S
* Meta-Training:
* Alarge collection of tasks is provided D = {T;}
* Use SGD to learn meta-learner on each T; (outer loop)
* Meta-learner fg(%[S) must adapt quickly with St (inner loop)

5/10 Copyright @ 111S, Tsinghua University

Goal: A neural module that can quickly adapt

OpenPsi @ I111S

59
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Representation of Meta-Learner

* Metric Learning

* Idea: use a nearest neighbor classifier.as fg(x|S)
o k* = argmaxD(x,xiS), fo(x]S) = yy~
l

* Goal: learn a good similarity metric. D (x, x")

5/10 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S
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Representation of Meta-Learner

* Metric Learning

* |dea: use a nearest neighbor classifier.as fg(x|S)

k¥ = argmaxD(x,xig), fo(x1S) = yi-
l

* Goal: learn a good similarity metric. D (x, x")

e Siamese Neural Network (Koch, Ruslan et al, ICML 2015)

* fOoy) 2 o(Wlp(x) — ()
* Predict the probabilityiof same class ’?

* Few-shot learning

. xf: support example for class i

e k= argmiaxf(x,xf)

5/10 Copyright @ 111S, Tsinghua University
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of input 1 & 2 are
in the same class
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Representation of Meta-Learner

* Metric Learning
* |dea: use a nearest neighbor classifier.as fg(x|S)
« k* = argmiaxD(x,xf), fo(x|S) = yp~
* Goal: learn a good similarity metric. D (x, x")
* Matching Network (Vinyals et.al, NIPS2016) g
* Main idea: soft nearest neighbor by attention ™
* Jdo (xf) support embeddings

* fo(x): query embedding
 a; = softmax(gl-Tf) &y =)y
* Enhancement
* fo = fo(x,8) = LSTMjy (S, x)
* go = go(x7,S) = LSTMqg(S, &pre s 1. rsimae sversivs

~
~
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Representation of Meta-Learner

* Bayesian Inference

* Posterior via Bayes Rule gives a perfect few-shotlearning method
* Gibbs sampling, MCMC, Variational Inference, etc

* Meta-Training: Pg(x,y)

RESEARCH

* Learning a Bayesian model
* It should allow simple Bayesian Inference RESEARCH ARTICLES
 NO SGD!!l We only havea few data'
* Adaptation: Py (y|x, ST) COGNITIVE SCIENCE
* Posterior sampling via.Bayes rule

. . Human-level concept learning
* Probabilistic Programming! ., I
* Universal Bayesian modeling tool thl"Ollgh l?l‘Obab.lllSth
* Black-Box Inference program induction

5/10 Copyright @ 111S, Tsinghua University 63

Brenden M. Lake,'* Ruslan Salakhutdinov,” Joshua B. Tenenbaum®
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (Pf'®lassification of new examples, (i) generation of new ex&#MPIEL? [iFy FAHLHRS"YFYMject into parts and relations (parts segmented by color),®nd (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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. . agas aaa
i) primitives

—
procedure GENERATETYPE
A /,[\ /\ K P(s) > Sample number of parts
fori=1..xdo

i) sub-parts —> L - Q n; + P(n;/K) > Sample number of sub-parts
Q D 'l' -> for j = 14 n, do
\ / J / l l \I' sij £ (5i5]s5:;,—1)) > Sample sub-part sequence
end for
lii) parts 3 —b L ) Ry<«>P(R;|S1, ..., 8 1) > Sample relation
J L end.for
: : Z \‘ N / P {K, R, S}
;\;)nflﬁjeftgt relation: N relation: YS) relation: return @GENERATETOKEN(1)) > Return program
attached along attached along attached at start Db
type level —
token level
procedure GENERATETOKEN(1))
\ fori =1..xdo

SI™ o P(S'™|8)) > Add motor variance
Lgrrr.} “ P(Lgrrt) |Rt', T-I{:rn.)’ :I-;[:ir!,ljj

l l > Sample part’s start location

v) exemplars B’LA ?}, 3 !
() e () olm) : :
. T, L™, 8™ > Compose a part’s trajector
vi) raw data l 1 l ond furﬁ_ FIL,57) P P | y
3'1' A p(Al™) > Sample affine transform
9— 3" 1m)  p(rim)|rim) Alm))y > Sample image
return 7(")

G <t
o
ot

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iit); and combining parts with relations to define simple programs (iv). New tokens are generated by running
these Btograms (v), which are then renderedias raw data (vi). (B?Y kLU SHEE BEREYating new types w and new token images I form =1, &, M. The
function f (-, -) transforms a subpart sequence and start location into a trajectory.
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Representation of Meta-Learner

 Gradient Descent

* Given new few-shot training data S, we fine-tune 6'using SGD
* fo(x[S) = go(x)
+ 0" =S6D(0,n,{x},¥]})
« gkt =gk —p . VL(S, 6%)
« 9% =9
* Issue: typically, SGD converges in.a large number of iterations
e Overfitting?
* We only have a few'samples but want to fine-tune a deep net
* Meta-training?
 What are we going to learn?

5/10 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

67



Lecture 12, Deep Learning, 2025 Spring OpenPsi @ I111S

Representation of Meta-Learner

* Gradient Descent
* Given new few-shot training data S, we fine-tune 6'using SGD

* Model-Agnostic Meta-Learning (MAML, Finn et al, ICML 2017)

* Goal: learn a good parameter initialization 6

* Such that 8 is close to optimal 6; via gradient steps in each test task T;
* Meta-Training

« 9% = argmein L(B;,SGD(6,S;))

— meta-learning

o Meta-Testing onT = (S, B) 9 ---- |learning/adaptation
. 9" = SGD(6%,5) \J
* Evaluation: L(B;ygg’) vr VL, O
1 U3

* Y
#
5/10 Copyright @ 111S, Tsinghua University 91- i e
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Representation of Meta-Learner

* Gradient Descent
* Given new few-shot training data S, we fine-tune 6'using SGD

* Model-Agnostic Meta-Learning (MAML, Finn et al, ICML 2017)

* Goal: learn a good parameter initialization 6
* Such that 8 is close to optimal 6; via gradient steps in each test task T;
* Meta-Training

) . BaCkprOpagation over
e 0 =argm01nL(Bi,SGD(9»5i))

SGD process?? — meta-learning
o Meta_Testing onT = (S, B) 6 ---- |earning/adaptation
« 0'=5GD(6%,S5) VL;
* Evaluation: L(Bygy) VL, .

& \
#
5/10 Copyright @ 111S, Tsinghua University 91- Yo H;‘ 69



Lecture 12, Deep Learning, 2025 Spring OpenPsi @ I111S

Representation of Meta-Learner

* Gradient Descent
* Given new few-shot training data S, we fine-tune 6'using SGD

* Model-Agnostic Meta-Learning (MAML, Finn et al, ICML 2017)

* Goal: learn a good parameter initialization 6
* Such that 8 is close to optimal 6; via gradient steps in each test task T;
* Meta-Training

_ 1:step GD approximation
« §* = arg min L(B;, 0 —nVL(S;, 6))

(gradient of gradient) — meta-learning
o Meta-Testing onT = (S, B) 9 ---- learning/adaptation
. 9" = SGD(6%,5) VL
* Evaluation: L(B,gy') VL, .

*
’
5/10 Copyright @ 111S, Tsinghua University 91' e H; 70
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Representation of Meta-Learner

* Gradient Descent
* Given new few-shot training data S, we fine-tune 6'using SGD

* fo(x|S) = gor(x)
« 0* =5SGD(6,n,{x,v})
« gkt =gk —p . VL(S, 6%)
- 9°=9
* MAML: learn good initializations-forfast SGD adaptation

» Adaptation: use SGD on S (meta-training samples) to update model parameters l

e Can we even adapt on'B (meta-test samples)? ool o

* We do not have label on test data... {5 dogs

1
 Self-supervised learning! SGD(MAMI")_IE

* Improve feature representation \

5/10 Copyright @ 111S, Tsinghua University 71
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Lecture 12, Deep Learning, 2025 Spring

Representation of Meta-Learner

e Test-Time Training (Sun et al, ICML 2020)
* L(X: Oe, O, HS) — Lm(X: Oe, H‘m) + L (X: Oe, HS)

* L,,:labeled loss; Ls: self-supervised loss
* f(x;0,) to extract features for down-stream tasks

training 0 { SO
min [Ep [ Zm (CB, Yy Hea em) 0 > ;380
eeaesaem (&
T ZS ($7 Ys; 967 08) Hm bird

Gradient through both loss heads (trair712)

5/10 Copyright @ 111S, Tsinoflidl
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Representation of Meta-Learner

e Test-Time Training (Sun et al, ICML 2020)
* L(X: Oe, O, HS) — Lm(X: Oe, Hm) + L (X: Oe, HS)

* L,,:labeled loss (only inference); L;: self-supervised loss
* f(x;0,) to extract features for down-stream tasks

testing EJ 0.

5/10 Copyright @ 111S, Tsinghua University 73
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Representation of Meta-Learner

e Test-Time Training (Sun et al, ICML 2020)
* L(X: Oe, O, HS) — Lm(X: Oe, Hm) + L (X: Oe, HS)

* L,,:labeled loss (only inference); L;: self-supervised loss
* f(x;0,) to extract features for down-stream tasks

ﬂ}e 05 {5
"X

5/10 Copyright @ 111S, Tsinghua University

0°
testing
000 0 [€s(m, ys; 0e,05) ]

Gradient through only SL head (test-tirge)
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Representation of Meta-Learner

e Test-Time Training (Sun et al, ICl elephant
* L(X,0¢,0,0s) = Lin(X, 0, 0 |

* L,,:labeled loss (only inference); L,
* f(x;0,) to extract features for dow

100

200

300

0 100 200 300 400 500

testing 05
1Mnin
° 06 T
He ,98 '63 (337 yS) 067 HS) —— elephant
. —— dog
0.4
— cattle
0.2 A
0.0 A
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Representation of Meta-Learner

* One-Minute Video Generation with Test-Time Training (CVPR 2025)

00:00 00:20 00:40 01:00

On a sunny morning in New York, Tom. a blue-gray cat carrying a briefecase, arrives at his office in the World Trade Center. As he settles in. his computer suddenly shuts down — Jerry, a
mischievous brown mouse, has chewed the cable. A chase ensues, ending with Tom crashing into'the wall as Jerry escapes into his mousehole. Determined, Tom bursts through an office
door, aceidentally interrupting a meeting led by Spike. an irritated bulldog, who angrily sends him away. Safe in his cozy mousehole. Jerry laughs at the chaos.

Terry happily eats cheese in a tidy kitchen until Tom playfully takes it away. teasing him. Annoyed, Jerry packs his belongings and leaves home, dragging a small suitease behind him. Later,
Tom notices Jerry's absence, feels sad. and follows Jerry’s tiny footprints all the way to San Francisco. Jerry sits disheartened in an alleyway. where Tom finds him, gently offering cheese as
an apgiogy. Jerry forgives Tom, accepts the cheese, and the two return home togetheridiwey frisnddisphoastoiestsity 76
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OpenPsi @ I111S

Representation of Meta-Learner

* One-Minute Video Generation with Test-Time Training (CVPR 2025)
e General test-time training by introducing a TTT layer
* Given a predefined prediction loss [(W¢Z1; x¢)
 ATTT layer updates the hidden state'with using the gradient VL

Output tokens 21

T

Hidden state Wy—> W; ——

!

Input tokens L1

5/10

Zi 1 z¢ = f(ay; W) Output rule

T |

—— Wiy — Wi=W;_ 1 — nvg(Wt—ﬁmt)

T T Update rule
Lt—1 Lt

Copyright @ 111S, Tsinghua University 77
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Representation of Meta-Learner

* One-Minute Video Generation with Test-Time Training (CVPR 2025)
* General test-time training by introducing a TTT layer
 TTT is fine-tuned for a video model with' local.attention

A
:f\: !
'Y :
I ‘ TTT Layer J
Gate |
T : [ Local’Attention I { Local Attention ] [ Local Attention ]
TTT Layer I
A ! & C)Y 14N
I | -
4 3 I ~, -~ - s ™ 4 - >
Local Attention ) Tow stands on | S The rope loops Anopen A& (03 (07 (0
T ] the ship - as Jerry... window... W
] A . A A
LayerNorm I < >
= I 3-second segment
I < >
i

One-minute

Figure 3. Ov erxiew of our approach. Left: Our modified architecture adds a TTT layer with a learnable gate after each attention layer. See

Subsectlon . Right: Our overall pipeline creates input secr.]uetnc?lslsuc%mprgs%{l of ? -second segments. This structure enables us to apply .
igh singhua University

‘Self-attention layers locally over segments and TTT layers olobally over the entire sequence. See Subsection 3.2.
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Representation of Meta-Learner

* One-Minute Video Generation with Test-Time Training (CVPR 2025)
* General test-time training by introducing a TTT layer
 TTT is fine-tuned for a video model with' local.attention
* Finetuning with 7 hours of Tom-Jerry,video (56 hours of 256 H100)

Copyright @ I11S, Tsi 79
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Representation of Meta-Learner

 Gradient Descent

* Given new training data S, we fine-tune@ using SGD
* fo(x|S) = gor(x)
s f* = SGD(H,n, {xis,yis})
« 9kt =gk —p . VL(S, 6%)
« 9% =¢
* MAML: learn good initializations-forfast SGD adaptation
* Adaptation: use SGD to‘update model parameters
* Test-time-training
* Use self-supenvision to even adapt with unlabeled test data

* Can we learnian'model'to output model parameters instead of SGD?
* j.e., learning an“SGD” algorithm

5/10 Copyright @ 111S, Tsinghua University 80
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Learning to Learn

 Learning to learn by gradient descent by gradient-descent (Marcin
Andrychowicz et al, DeepMind, NIPS 2016)

* Learning an LSTM optimizer my(Vg) to-produce a increment on 6

dL(X,Y;0
* 01 = 0 + my (V) where V= (ae )
* Meta-Loss: L(¢; 0%, X,Y)
* Gradient over gradient ; t2 f 1 ; ty
* Recursive gradient = i o : : i
: : 6, | 0., o, | :
* Gradient preprocessing Optimizee ——~%— -»@ S »@ — -
, N P P P I P
log(|V . — t-2 t-1 t
ok _ (2 sen(v)) GtV ] e v R Iy
(— ]_, l-’_?‘pV) otherwise Optimizer : » m —  m : > m >
hio hi 4 E h, i hi, 4

5/10 p = 10 Copyright @ I11S, Tsinghua Univers:ity A
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Learning to Learn

 Learning to learn by gradient descent by gradient-descent (Marcin
Andrychowicz et al, DeepMind, NIPS 2016)

* Learning an LSTM optimizer my(Vg) to-produce a increment on 6

! CIFAR-10 ) CIFAR-5 o CIFAR-2
_________ » > 4 i . === RMSprop
LSTM ] N T
b p A === NAG
. o VRSN, — LSTM
f . 1 ‘*"-‘*m_;;;‘;&':_"': —— LSTM-sub
- o
-———T——— b n "-'l/,—-\-\\]— T T T T T T T T T T T T T T T
LSTM —I\“_+__/' 200 <400 600 800 1000 200 400 600 800 1000 200 400 600 80D 1000
+ Step
. ‘ o Figure 7: Optimization performance on the CIFAR-10 dataset and subsets. Shown on the left is the
Figure 3: One step of an LSTM optimizer. fi‘_\” LSTM optimizer versus various baselines trained on CIFAR-10 and tested on a held-out test set. The
LSTMs have shared parameters, but separate hid- two plots on the right are the performance of these optimizers on subsets of the CIFAR labels. The
den states. additional optimizer LSTM-sub has been trained only on the heldout labels and is hence transferring

5/10 to a completgly; ROyehdatasals vniversity
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Learning to Learn

* More advances on learning to optimize

* Learned Optimizers that Scale and Generalize (Google Brain, ICML 2017)
* Work with ResNet

* Hierarchical RNN architectures

Global RNN
* Non-trivial scaling & momentum | /ﬁt\
* Using a lot of engineered optimization features al l \\TL l\
|
Tensor BRNN J { Tensor RNN J { Tensor RNN
) P [y
‘ __._fTrE -\1‘| '/]E 1\
AT L-”‘é
(011,181 || [01]s] ({62l ) | (62
Parameter RNNs ,
Inputs

Scaled gradients, =9
5/10 vee

-F.“ \‘\
QOutputs
Parameter RNN Update direction,
[Ht‘_]j change in magmtu&e,

Copyright @ 111S, Tsinghua University
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Learning to Learn

* More advances on learning to optimize
* Learned Optimizers that Scale and Generalize (Google Brain, ICML 2017)
* Neural Optimizer Search with Reinforcement-Learning (Quoc Le at al, ICML

2017, Google Brain)

Optimizer \Best Test  Final Test

* Use RL to learn symbolic optimizer on-CIFAR10 SGD 93.0 923

* Work well on NLP tasks and ImageNet Momentum 93.0 92.2

Adam 92.6 92.3

RMSPr 92.3 91.6

Optimizer ‘ Top-1 Accuracy Top-5 Accuracy op ’

PowerSign 93.0 92.4

Optimizer | Train perplexity —Test BLEU RMSProp ‘ 73.5 91.5 POV&-’E‘I‘SiéII—ld 93.6 03 4
Adam | 1.49 24.5 PowerSign-cd 73.9 91.9 PowerSign-cd 93.7 93.1
PO\VEI‘Sigﬂ ‘ 1.39 25.0 AddSlgll—ld 73.8 91.6 PO\\-EI‘SlgH—]d 10 94.2 92.6
PowerSign-rdag 04.4 92.0

Table 3./Performance of our PowerSign and AddSign optimizers AddS{gn 93.0 92.6

against RMSProp on a state-of-the art MobileNet baseline (Zoph AddS{gn—ld 93.5 9%-0

etdl.. 20017). All optimizers are applied with cosine learning rate AddSign-cd 93.6 92.4

Neca) AddSign-rdyo 94.2 94.0

5/10 . Copyright @ 111S, Tsinghua University AddSigﬂ'ron 94.4 1.3




Optimizer \ Final Val  Final Test Best Val  Best Test
Lecture 12, Deep Learning, 2025 Spring SGD 97.0 918 gzolgﬁnPsi ® III%1 9
Momentum 02.7 92.1 93.1 92.3
. Adam 90.4 90.1 91.8 90.7
I_e a rn | n g tO Lea rn RMSProp 90.7 90.3 91.4 90.3
ik (1 + €) % sigmoid(10~w) 90.6 90.6 93.1 92.2
sign(m) * /|g] 2.2 91.8 92.9 92.2
sign(g) * sign(m) * m. 91.2 91.0 92.4 91.3
. sign(m) * \/|g| 91.7 91.1 92.3 91.6
* More advances on learning to ¢ i+ sin() - sigi(m)) « sien(q) 91.3 904 919 9Ll
(1 + sign(g) = sign(m)) * sign(mn) 91.0 90.6 92.0 90.8
* Learned Optimizers that Scale ar sign(o) /[ 9.7 90.6 915 90.6
gl * 92.0 90.9 93.6 93.1
* Neural Optimizer Search with Re isl+¢ L ‘ 92.6 91.9 93.2 92.3
. (1 + sign(g) * sign(m)) = m 91.8 91.3 92.6 91.8
2017, Google Brain) (1 + sign(g) * Sign(r)) * RMSProp 92.0 92.1 92.9 9.4
. o (14 sign(g) * sign(m)) * Adam 91.2 91.2 92.2 91.9
e Use RL to learn symbolic optimizer ‘jesignto)=ientm) 4 clip(g,10-1)] = ¢ 92.5 92.4 93.8 93.1
clip(riz, 107 « ¢° 93.5 92.5 93.8 92.7
* Work well on NLP tasks and Image m‘*(ef.' J 031 924 03.8 026
g%, c5ien(g)sign(m) 93.1 92.8 93.8 92.8
drop(g, 0.3) % esign(g)xsign(m) 92.7 92.2 93.6 92.7
i * 9 93.1 92.5 93.6 92.4
drop(ri,0.1)/(e? +€) 92.6 92.4 93.5 93.0
drop(g, 0.1) x esien(g)+sien(m) 92.8 92.4 93.5 92.2
clip(Rl-"[S]f’rop, IQ_5) + drop(m, 0.3) 90.8 90.8 91.4 90.9
Adam x g"ien(9)rsign(m) 92.6 92.0 93.4 92.0
Adam ™ 92.9 92.8 93.3 92.7
g + drop(ri, 0.3) 93.4 92.9 93.7 92.9
drop(m, 0.1) x* e’ 92.8 92.7 93.7 92.8
g —clip(g®,107%) 93.4 92.8 93.7 92.8
5/10 Copyright 0 G117 Tinghua University_a 93.2 92.5 93.5 g93.1
drop(7i, 0.3) * e'? ¥ 93.2 93.0 93.5 93.2
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Learning to Learn

* More advances on learning to optimize
* Learned Optimizers that Scale and Generalize (Google Brain, ICML 2017)

* Neural Optimizer Search with Reinforcement-Learning (Quoc Le at al, ICML

2017, Google Brain)

* Use RL to learn symbolic optimizer on-CIFAR10
* Work well on NLP tasks and ImageNet

* Even learning a loss function for RL!
* RLA2 (OpenAl, 2017): learning an LSTM policy updater (instead of SGD)

* Evolved Policy Gradient (OpenAl, 2018): evolution algorithm to learn a neural
loss function forRL to run SGD (instead of policy gradient)

* Meta-Gradient Reinforcement Learning (DeepMind 2020): discover a new
symbolic Q-learning objective

5/10 Copyright @ 111S, Tsinghua University 86
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Use LLM as a Pretrained Meta-Learner

e Eureka: Human-Level Reward Design via LLMs (ICLR 2024, Nvidia)

5/10

OpenPsi @ I111S

* Give the code and execution result to LLM, and.the/'LLM will make it work!

@ Environment Code

class ShadowHandPenSpin(VecTask):
def compute_observations(self):
self.obj_pose = ...
self.obj_pos = ...
self.obj_rot = ...
self.obj_linvel
self.obj_angvel

self.tgt_pose = ...
self.tgt_pos O
self.tgt_rot

self.fingertip_state = ...
self.fingertip_pos = ...

self.compute_full_state()

def compute_full_state(self):

Task Description

To make the shadow hand spin the pen
to a target orientation

& Coding LLM

(GPT 4)

~ 4D

Query, with
Feedback

We trained a RL policy using the
provided reward function code...
av_penalty: ['0.02', '0.05"',
'0.05', '0.04', '0.03', ...]
success_rate: ['0.00', '0.38"',

\

'1.57', '3.01', '3.95', ...]
Please carefully analyze the policy
feedback and provide a new, imProved
reward function...Copyriaht @ IlIs,

Tsinghu

Qg

Rewadrd
{ /&andidate
N Sampling

L'

def compute_reward(

):

obj_rot, obj_angvel, ...

# Angular velocity penalty

av_norm = torch.norm(obj_angvel)

av_penalty = torch.where(
av_norm > 2.0,
torch.exp(av_norm - 2.0)

Reward

Reflection
a University

26
GPU-
Accelerated RL

87



def compute_reward(object_rot, goal_rot, object_angvel, object_pos, fingertip_pos):

Lecture 12, Déep E&Wrﬁl 5075 Spring T

+ + + + + + + +

5/;2

rot_diff = torch.abs(torch.sum(object_rot * goal_rot, dim=1) - 1) / 2

rotation_reward_temp = 28.0

rotation_reward_temp = 36.0 Changing hyperparameter
rotation_reward = torch.exp(-rotation_reward_temp * rot_diff)

# Distance reward

min_distance_temp = 10.0

min_distance = torch.min(torch.norm(fingertip_pos - object_pos[:, Nonely dim=2), dim=1).values
distance_reward = min_distance

uncapped_distance_reward = torch.exp(-min_distance_temp * min_distance)

distance_reward = torch.clamp(uncapped_distance_reward, 0.0,.1.0) Changing functional form
total_reward = rotation_reward + distance_reward

# Angular velocity penalty Adding new component

angvel_norm = torch.norm(object_angvel, @im=1)
angvel_threshold = 0.5
angvel penalty_temp = 5.0
angular_velocity_penalty = torch.whete(andvel_norm > angvel_threshold,
torch.exp(-angvel_penaltystemp * (angVel _norm - angvel_threshold)), torch.zeros_like(angvel_norm))

total_reward = 8.5 % rotation_reward + 0.3 x distance_reward - 8.2 * angular_velocity_penalty

reward_components =, {
"rotation_rewaxd": rotation_reward,
"distance_reward": distance_reward,

"angular_velocity_penalty": angular_vE&YH&ey'Befrdpi niversit

OpenPsi @ I111S
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OpenPsi @ I111S

Use LLM as a Pretrained Meta-Learner

* |ICPL: Few-shot In-context Preference Learning via-LLMs (Yi Wu, 2025)

 Human preference can be applied in this LLM evolving process

Reward Function Samples

def compute_reward(...): def compute_reward{...}: def compute_reward(...)
U helght_rewar d = balance_reward -
velocity reward =
a torch.exp( torch.expl
torch. exp( torse[:, 2] - up_vec[:, 2]) / temp
velocity world[ prev_torso|
:, 2]) t, 2]) / torso_tesp
Sample 1 Sample 2 Sample 3

&

LLMs @

LI

LLMs @
1

Prompts

Historical Difference

“

Environment Context The differénce between iter2-good

and iterl-good is: ...
The difference between iter3-good
and iter2-good is: ...

Task Description

5/10 Feedback

v
Reward Trace

We tracked the values of the individual

components in selected reward functions:

velocity reward: [‘0.01°, “0.027, ...]

Copyright @ 111S, Tsinﬁgsdjﬂggksitv

RL | Sample 1
‘ l . . Render
Training
\

Preferences

Sample 2 =

Sample 3 ﬁ

Eﬁiﬂ: v

Human: Pick the best and worst video

Synthetic: Prefer 1 over 2 if R;>R,

!

Preference

Good example: def compute_reward(...)
Bad example: def compute_reward(...)
Modify based on the good example.

90




Lecture 12, Deep Learning, 2025 Spring OpenPsi @ I11S

Use LLM as a Pretrained Meta-Learner

* |ICPL: Few-shot In-context Preference Learning via-LLMs (Yi Wu, 2025)
* Human preference can be applied in this LLM evolving process

A humanoid robot jumps like a human

5/10 GPT-4 zero-shot result Copyright @ I111S, Tsinghua University ICPL with human in the Ioop 91
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Learning to Learn

* Deep learning requires a large number of samplesto train

e Can we learn “dataset”?
* Small-scale and efficient for learning

e Dataset Distillation (Wang et al, MIT & Berkeley, 2018)
* Meta-learn training samples
* Backprop via SGD process
* Weight normalization
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(a) Dataset distillation on MNIST and CIFAR10
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Learning to Learn

* Deep learning requires a large number of samplesto train

e Can we learn “dataset”?
* Small-scale and efficient for learning

e Dataset Distillation (Wang et al, MIT & Berkeley, 2018)

e Data Quality for LLM training

e Textbooks for LLM training
e https://arxiv.org/abs/2306.11644
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Learning to Learn
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Learning to Learn

OpenPsi @ I111S

* Deep learning requires a large number of samplesto train

e Can we learn “dataset”?
* Small-scale and efficient for learning

* Dataset Distillation (Wang et al,, MIT &

e Data Quality for LLM training

e Textbooks for LLM training
* https://arxiv.org/abs/2306.11644
* RuozZhiBa for Chinese \LLM training

* Only 240 samples
* https://arxivorg/absf/2403.18058

* https://huggingface.co/datasets/m-a-p/COIG-CQIA/viewer/ruozhiba
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Summary of Meta-Learning

* Few-Shot Learning
* Goal: learn a network that can fast adapt
* Metric-Learning
* Bayesian Learning (probabilistic programming / symbolic learning)

* Learning with gradient
* MAML, TTT

* Learning to Learn

* Learn an optimizer (and even an algorithm!)
* Neural / symbolic update rule

* LLM as pretrained meta-learner
* Learn training instances
-0 ® Even learn neural network arghitectusres.~==«Neural Architecture Search! o
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Today’s Topic

OpenPsi @ I111S

* Unsupervised Learning and Self-supervised Learning

* Learning to Efficiently Learn Neural Networks
* Aka. Meta-Learning, Learning toLearn

* Reinforcement Learning and . Human-Al Collaboration
* Some interesting projects from Prof. Wu’s group

5/10 Copyright @ 111S, Tsinghua University 97
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